Линейный регрессионный анализ

 

Линейный регрессионный анализ позволяет получить предсказание значений зависимой переменной на основе значений независимых переменных.

Линейный регрессионный анализ является достаточно сложной статистической процедурой. Поэтому здесь ограничимся рассмотрением случая одной зависимой и одной независимой переменной и будем использовать процедуру простой линейной регрессии.

Для расчета линейной модели регрессии необходимо использовать пункты меню:

Statistics – Regression — Linear –

выбрать переменную и поместить ее в окно Dependent (зависимая переменная) – выбрать переменную и поместить ее в окно Independet(s) (независимые переменные).

Нажав кнопку Statistics… можно задать расчет ряда коэффициентов регрессии, нажав кнопку Plots… — вид выводимых графиков в процедуре линейной регрессии, можно задать сохранение результатов процедуры «Линейная регрессия» (кнопка Save…) и параметры процедуры регрессии (кнопка Options…)

При интерпретации результатов, полученных в окне вывода программы SPSS, необходимо учитывать, что некоторые выходные данные требуются только при построении сложных регрессионных моделей. Поэтому рассмотрим только основные элементы выходных данных. В сноске к таблице Model Summary дается информация, которая показывает, насколько хорошо можно представить значение зависимой переменной на основе независимой:

R – коэффициент корреляции между переменными

 

R-square — квадрат коэффициента корреляции (показывает, какая часть изменчивости зависимой переменной может быть объяснена независимой переменной).

При интерпретации выходных данных необходимо учитывать значимость коэффициентов (столбец Sig. таблицы ANOVA): линейная регрессионная модель зависимости является надежной, если уровень значимости не превышает 0.05 (5%).

В таблице Coefficients (коэффициенты) приводятся рассчитанные коэффициенты регрессионной модели: регрессионный коэффициент (тангенс угла наклона прямой), а также постоянная прямой. Значение в первой строке столбца В таблицы (Constant) – постоянная, во второй (где приведено имя переменной) – коэффициент (тангенс угла наклона прямой). С помощью этих чисел можно записать уравнение прямой:

Зависимая переменная = Коэффициент * Независимая

переменная + Постоянная

Теперь, используя это уравнение, можно по заданному значению независимой переменной вычислять значения (предсказанные) зависимой переменной.

В столбце Sig. таблицы Coefficients представлен уровень значимости для каждого регрессионного коэффициента. При 5%-ном уровне значимости можно считать неравными нулю только те коэффициенты, для которых значение Sig. не превышает 0.05.