Возможности SPSS

 

Для анализа результатов маркетинговых исследований может быть использовано множество методов математической статистики, реализованных в программе SPSS. В данной работе рассмотрены основы работы с основными методами.

К методам описательной статистики относится, в частности, построение частотных таблиц. Выбираем пункты меню:

Statistics – Summarize – Frequencies – выбор дискретной переменной (переменных).

В диалоговом окне процедуры Frequencies (Частоты) исследователь может (cм. рис. 2.5):

— нажав кнопку Statistics, задать вычисление максимального, минимального и среднего значения, моды, медианы, среднеквадратического отклонения для количественных переменных

— кнопкой Charts задать вид графиков – столбиковая или круговая диаграммы, гистограмма

— кнопкой Format задать порядок, в котором будут выводиться результаты

Для непрерывных переменных может использоваться обобщающая статистика:

Statistics – Summarize – Descriptives.

Процедура Descriptives осуществляет вывод одномерных статистик для нескольких переменных в одной таблице, а также вычисляет нормированные значения переменных. Переменные могут быть упорядочены по величине их средних значений (в порядке возрастания или убывания), по алфавиту или в порядке, в котором пользователь выбирает переменные (используется по умолчанию).

Например, если каждое наблюдение в анализируемых данных содержит итоги дневных объемов продаж для одного из дистрибьюторов компании в течение нескольких месяцев, то эта процедура поможет рассчитать средний дневной объем продаж для каждого дистрибьютора и расположить полученные результаты от наиболее высоких к низким.

Методы проверки статистических гипотез позволяют получить ответ на вопрос, являются ли обнаруженные закономерности подлинными, или же их можно объяснить случайными особенностями выборки. В частности, важным является вычисление стандартной ошибки среднего значения. Стандартная ошибка среднего значения необходима, чтобы определить, в какой области значений лежит истинное среднее значение генеральной совокупности. Для ее вычисления необходимо использовать пункты меню:

Statistics – Summarize – Frequencies — Statistics – S.E.Mean

(S.E.Mean – standard error Mean).

Для непрерывной переменной, как уже говорилось выше, вместо стандартной ошибки среднего используются нормированные значения (z-значения) и необходимо использовать:

Statistics – Summarize – Descriptives —

– выбор переменных – Save standartized values as variably.

Для проверки нормальности распределения кривая нормального распределения может быть наложена на гистограмму. Для этого в программе SPSS требуется использовать пункты меню: Statistics – Summarize –

– Frequencies – Charts – Histograms – With normal curve (см. рис. 2.6)

Таким образом, гипотеза нормальности может быть проверена графически.

Для проверки нормальности распределения могут использоваться показатели асимметрии (Skewness) и эксцесса (Kurtosis). Асимметрия показывает «скошенность» кривой распределения относительно нормальной кривой, а эксцесс замеряет «заостренность» кривой (положительный – заостренная кривая, отрицательный – «тупая»). Стандартная ошибка Std.Error позволяет оценить значимость асимметрии и эксцесса. Для вычисления этих показателей необходимо использовать пункты меню:

 

Statistics – Summarize – Frequencies — Statistics – Skewness, Kurtosis

Для предварительного вычисления многих параметров описательной статистики (минимум, максимум, среднеквадратическое отклонение, усеченное среднее и т.п.), можно использовать разведочный анализ — процедуру Explore:

Statistics – Summarize – Explore

– выбор переменной — Statistics…

Для проверки нормальности в этой процедуре вычисляются асимметрия, эксцесс, изображается диаграмма Stem-and-leaf — «ствол и листья», позволяющая оценить распределение:

Statistics – Summarize – Explore –

выбор переменной — Plots…- Stem-and-leaf

(Stem Width – ширина «ствола»).

При интерпретации результатов необходимо учитывать, что диаграмма Stem-and-leaf в окне вывода программы SPSS располагается с наклоном 90о

Оценить вид распределения помогают также «ящичковые диаграммы». Для вычисления «ящичковых диаграмм» используются пункты меню: Statistics – Summarize – Explore

– выбор переменной – Plots… — Factor levels Together

Ящичковые диаграммы дают исследователю общее представление о распределении переменной: на них высота ящичка – разброс значений, жирная черта внутри – медиана или 50%- процентиль, нижняя грань – 25%-процентиль, верхняя – 75%-процентиль.

Значения, не попавшие внутрь, изображаются отдельно вне ящика.

Эти значения можно исследовать отдельно (если они есть):

Statistics – Summarize – Explore

– выбор переменной — Statistics…- Outliers

В окне вывода при таком исследовании выводится таблица экстремальных значений Extreme Values.

Одним из методов исследования нормальности распределения является также построение графиков на нормальной вероятностной бумаге. На графике даются координаты фактических значений переменных и теоретические значения, вычисленные при условии

нормальности распределения (линия). Чем ближе фактические значения к линии, тем больше распределение близко к нормальному. Аналогично можно интерпретировать график с удаленным трендом – Detrended Normal Q-Q Plot, — нормальному распределению здесь соответствует горизонтальная линия.

При построении графиков на нормальной вероятностной бумаге в программе SPSS автоматически рассчитываются значения коэффициентов Колмогорова-Смирнова и Шапиро-Уилкса. Эти критерии основаны на нулевой гипотезе о том, что данная выборка получена из генеральной совокупности, имеющей нормальное распределение. В окне вывода можно изучить Tests of Normality, особенно обращая внимание на уровень значимости каждого критерия Sig: если он больше 0.05 (т.е. превышает 5%), то можно принять нулевую гипотезу – или, строго говоря, нет оснований ее отвергнуть!

Существует большое количество методов проверки нормальности распределения, но ни один из них не является универсальным. Одни могут подтверждать нормальность, а другие – отвергать. Исследователю необходимо использовать все возможные методы для получения как можно менее противоречивых данных!



Adblock detector