Корреляционные функции

 

Корреляция — это исследование комбинаций непрерывных переменных. Графическое представление зависимости между переменными можно получить с помощью диаграммы рассеяния. Для построения диаграммы рассеяния используются пункты меню:

Graphs – Scatter – Simple – Define – выбор переменных

Диаграмма позволяет на глаз оценить зависимость двух переменных.

Поверх уже созданной диаграммы в окне вывода можно наложить линию наименьших квадратов. В окне Редактора графиков (чтобы его вызвать, необходимо два раза щелкнуть левой клавишей мыши на графике в окне вывода) требуется задать: Charts – Options – Fit Line – Total

Если требуется обнаружить квадратичную или кубическую зависимость, необходимо в окне редактора графиков выбирать Fit Options.

Информацию о зависимости между переменными можно получить, вычислив коэффициент корреляции Пирсона r:

r = 1 – прямая зависимость

r = -1 — обратная зависимость

r = 0 — отсутствие зависимости (вернее, в данном случае линейную зависимость установить не удается и можно попытаться установить нелинейную зависимость, используя диаграммы рассеяния – см. выше). Для вычисления коэффициента корреляции Пирсона используются пункты меню:

Statistics – Correlate — Bivariate –

выбор переменных – Correlation Coefficients — Pearson

 

Для каждой выбранной пары переменных принимается нулевая гипотеза о том, что линейная зависимость между ними отсутствует.

Результаты вычислений помещаются в таблицу Correlations в окне вывода:

Pearson Correlation – коэффициент корреляции

Sig. (2-tailed) – уровень значимости коэффициента

N — количество записей в файле данных, по которым делался расчет.

Особое внимание следует обратить на уровень значимости – любая значимость выше 0.05 (5%) подтверждает нулевую гипотезу (о том, что в генеральной совокупности значение коэффициента корреляции равно нулю).

Для использования коэффициента корреляции Пирсона необходимо, чтобы все переменные были непрерывными и данные являлись бы случайной выборкой из генеральной совокупности с нормальным распределением. В том случае, когда какое-либо из этих условий не выполняется и коэффициент Пирсона использовать нельзя, применяются так называемые непараметрические критерии и, в частности, коэффициент ранговой корреляции Спирмена. Его значение также заключено между –1 и +1, интерпретация осуществляется так же, как и интерпретация значений коэффициента Пирсона.

Statistics – Correlate — Bivariate – выбор переменных —

— Correlation Coefficients — Spearman

Коэффициент Спирмена менее мощный, чем коэффициент Пирсона, поскольку в нем используется меньше информации о данных тем не менее он является весьма полезным и часто используется в случае невозможности использования критерия Пирсона.

При интерпретации результатов исследования комбинации переменных с помощью корреляции, необходимо помнить, что сильная корреляционная зависимость между переменными совсем не означает, что одна является причиной другой!